

Stochastic block economic value modelling

Tinashe Tholana Wits University, School of Mining

Geological block model

Block economic value (BEV) = Block revenue - cost

BEV = [Block tonnage*grade*recovery* price - (Mining cost +Processing cost)]

$$BEV_{ij} = [(T_{ij} * G_{ij} * R_{ij} * P_{ij}) - (MC_{ij} + PC_{ij})]$$

Where; T_{ij} is tonnage of block B_{ij} G_{ij} is the grade of block B_{ij} R_{ij} is the % of metal recovered from block B_{ij} P_{ij} is the unit price of the metal MC_{ij} is the cost of mining block B_{ij} PC_{ij} is cost of processing block B_{ij} $i, j \in \mathbb{Z}$

If BEV is positive-economic to mine, otherwise its uneconomic

Problem

$$BEV_{ij} = [(T_{ij} * G_{ij} * R_{ij} * P_{ij}) - (MC_{ij} + PC_{ij})]$$

Where; T_{ij} *is tonnage of block* B_{ij} G_{ij} *is the grade of block* B_{ij} R_{ij} *is the % of metal recovered from block* B_{ij} P_{ij} *is the unit price of the metal* MC_{ij} *is the cost of mining block* B_{ij} PC_{ij} *is cost of processing block* B_{ij} $i, j \in Z$

Deterministic model

Values used are assumed to be **known fixed values** not subject to uncertainty

Single and static BEVs

In reality, BEV are functions of uncertain variables (grade, price, costs)

Stochastic model

Uncertainty of variables is represented by a probability distribution

BEVs are probability distributions of the possible values which could occur

